1. |
Crimin A, McGarry A, Harris EJ, et al. The effect that energy storage and return feet have on the propulsion of the body: A pilot study. Proc Inst Mech Eng [H] 2014; 228: 908–915. |
|
2. |
Curtze C, Hof AL, van Keeken HG, et al. Comparative roll-over analysis of prosthetic feet. J Biomech 2009; 42: 1746–1753. |
|
3. |
Strike SC, Arcone D, Orendurff M. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees. Gait Posture 2018; 62: 327–332. |
|
4. |
Ray SF, Wurdeman SR, Takahashi KZ. Prosthetic energy return during walking increases after 3 weeks of adaptation to a new device. J Neuroengineering Rehabil 2018; 15: 6. |
|
5. |
Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of AmpuTees (MAAT 5): Impact of five common prosthetic ankle-foot categories for individuals with diabetic/dysvascular amputation. J Rehabil Assist Technol Eng 2019; 6: 2055668318820784. |
Download Overview
|
6. |
Haber CK, Ritchie LJ, Strike SC. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task. Hum Mov Sci 2018; 58: 337–346. |
|
7. |
Rock CG, Wurdeman SR, Stergiou N, Takahashi KZ. Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses. PloS one. 2018;13(10). |
|
8. |
Highsmith MJ, Kahle JT, Miro RM, et al. Differences in Military Obstacle Course Performance Between Three Energy-Storing and Shock-Adapting Prosthetic Feet in High-Functioning Transtibial Amputees: A Double-Blind, Randomized Control Trial. Mil Med 2016; 181: 45–54. |
|
9. |
Moore R. Patient Evaluation of a Novel Prosthetic Foot with Hydraulic Ankle Aimed at Persons with Amputation with Lower Activity Levels. JPO J Prosthet Orthot 2017; 29: 44–47. |
|
10. |
Moore R. Effect on Stance Phase Timing Asymmetry in Individuals with Amputation Using Hydraulic Ankle Units. JPO J Prosthet Orthot 2016; 28: 44–48. |
|
11. |
Buckley JG, De Asha AR, Johnson L, et al. Understanding adaptive gait in lower-limb amputees: insights from multivariate analyses. J Neuroengineering Rehabil 2013; 10: 98. |
|
12. |
Sedki I, Moore R. Patient evaluation of the Echelon foot using the Seattle Prosthesis Evaluation Questionnaire. Prosthet Orthot Int 2013; 37: 250–254. |
|
13. |
Rogers JP, Strike SC, Wallace ES. The effect of prosthetic torsional stiffness on the golf swing kinematics of a left and a right-sided trans-tibial amputee. Prosthet Orthot Int 2004; 28: 121–131. |
|
14. |
Kobayashi T, Orendurff MS, Boone DA. Dynamic alignment of transtibial prostheses through visualization of socket reaction moments. Prosthet Orthot Int 2015; 39: 512–516. |
|
15. |
Wright D, Marks L, Payne R. A comparative study of the physiological costs of walking in ten bilateral amputees. Prosthet Orthot Int 2008; 32: 57–67. |
|
16. |
Vanicek N, Strike SC, Polman R. Kinematic differences exist between transtibial amputee fallers and non-fallers during downwards step transitioning. Prosthet Orthot Int 2015; 39: 322–332. |
|
17. |
Barnett C, Vanicek N, Polman R, et al. Kinematic gait adaptations in unilateral transtibial amputees during rehabilitation. Prosthet Orthot Int 2009; 33: 135–147. |
|
18. |
Emmelot C, Spauwen P, Hol W, et al. Case study: Trans tibial amputation for reflex sympathetic dystrophy: Postoperative management. Prosthet Orthot Int 2000; 24: 79–82. |
|
19. |
Boonstra A, Fidler V, Eisma W. Walking speed of normal subjects and amputees: aspects of validity of gait analysis. Prosthet Orthot Int 1993; 17: 78–82. |
|
20. |
Datta D, Harris I, Heller B, et al. Gait, cost and time implications for changing from PTB to ICEX® sockets. Prosthet Orthot Int 2004; 28: 115–120. |
|
21. |
de Castro MP, Soares D, Mendes E, et al. Center of pressure analysis during gait of elderly adult transfemoral amputees. JPO J Prosthet Orthot 2013; 25: 68–75. |
|
22. |
Major MJ, Scham J, Orendurff M. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Prosthet Orthot Int 2018; 42: 198–207. |
|
23. |
McNealy LL, A. Gard S. Effect of prosthetic ankle units on the gait of persons with bilateral trans-femoral amputations. Prosthet Orthot Int 2008; 32: 111–126. |
|
24. |
Su P-F, Gard SA, Lipschutz RD, et al. Gait characteristics of persons with bilateral transtibial amputations. J Rehabil Res Dev 2007; 44: 491–502. |
|
25. |
Boonstra A, Fidler V, Spits G, et al. Comparison of gait using a Multiflex foot versus a Quantum foot in knee disarticulation amputees. Prosthet Orthot Int 1993; 17: 90–94. |
|
26. |
Gard SA, Su P-F, Lipschutz RD, et al. The Effect of Prosthetic Ankle Units on Roll-Over Shape Characteristics During Walking in Persons with Bilateral Transtibial Amputations. J Rehabil Res Dev 2011; 48: 1037. |
|
27. |
Major MJ, Stine RL, Gard SA. The effects of walking speed and prosthetic ankle adapters on upper extremity dynamics and stability-related parameters in bilateral transtibial amputee gait. Gait Posture 2013; 38: 858–863. |
|
28. |
Van der Linden M, Solomonidis S, Spence W, et al. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait. J Biomech 1999; 32: 877–889. |
|
29. |
Graham LE, Datta D, Heller B, et al. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Arch Phys Med Rehabil 2007; 88: 801–806. |
|
30. |
Graham LE, Datta D, Heller B, et al. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Clin Rehabil 2008; 22: 896–901. |
|
31. |
Mizuno N, Aoyama T, Nakajima A, et al. Functional evaluation by gait analysis of various ankle-foot assemblies used by below-knee amputees. Prosthet Orthot Int 1992; 16: 174–182. |
|