Orion3

Blatchford was the first company in the world to have a microprocessor knee (MPK) available on the prosthetic market; the Intelligent Prosthesis (IP) in 1993. Sensors were incorporated and took measurements to determine walking speed and the behaviour of the pneumatic section of the piston was adapted, providing the appropriate degree of swing phase extension. Further iterations of this technology included the IP+ and Smart IP, which had programming advancements and were simpler for the prosthetist to calibrate.

Blatchford's first microprocessor knees to provide control of both stance and swing phase were the Adaptive and Smart Adaptive. These devices measured the loads applied by the user and provided resistance to knee flexion during stance phase, as well as retaining the swing phase control from older models.

The Orion family of knees was also based on these well-established and proven MPK technologies.

Improvements in Clinical Outcomes using microprocessor-controlled prosthetic knees

Improvement in **SAFETY**

- Significantly reduced number of falls^{1,2}
- Reduced centre-of-pressure fluctuations by 9-11% with standing support active when standing on sloped ground³
- Less cognitive demand during walking, leading to reduced postural sway⁴

Improvement in MOBILITY

- Increased walking speed⁵
- Easier to walk at different speeds⁶
- Higher scores in mobility-related patient-reported outcome measures⁷
- More natural gait^{6,8}
- Easier to walk on slopes⁶

Improvement in ENERGY EXPENDITURE

- Reduced energy expenditure compared to mechanical knees⁹⁻¹³
- Equivalent energy expenditure to other MPKs¹⁴
- Reduced self-perceived effort^{6,8}
- Energy expenditure closer to that of able-bodied control subjects¹⁵
- Able to walk further before becoming tired⁶

Improvement in SYMMETRY

- Better step length symmetry⁵
- Reduced loading asymmetry with standing support active when standing on sloped ground³

Improvement in USER SATISFACTION

- Reduced fear of falling¹
- Reduced limitations due to an emotional problem⁷
- Preference over other prosthetic knees^{1,14}

Improvement in **HEALTH ECONOMICS**

• Reductions in direct and indirect healthcare costs when using an MPK¹⁶

References

- Kaufman KR, Bernhardt KA, Symms K. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees. Clin Biomech 2018; 58: 116–122.
- 2. Campbell JH, Stevens PM, Wurdeman SR. OASIS 1: Retrospective analysis of four different microprocessor knee types. Journal of Rehabilitation and Assistive Technologies Engineering. 2020;7:2055668320968476.
- McGrath M, Laszczak P, Zahedi S, et al. Microprocessor knees with 'standing support' and articulating, hydraulic ankles improve balance control and inter-limb loading during quiet standing. J Rehabil Assist Technol Eng 2018; 5: 2055668318795396.
- 4. Heller BW, Datta D, Howitt J. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees. Clin Rehabil 2000; 14: 518–522.
- 5. Chin T, Maeda Y, Sawamura S, et al. Successful prosthetic fitting of elderly transfemoral amputees with Intelligent Prosthesis (IP): a clinical pilot study. Prosthet Orthot Int 2007; 31: 271–276.
- Datta D, Howitt J. Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees: user's verdict. Prosthet Orthot Int 1998; 22: 129–135.
- Wurdeman SR, Stevens PM, Campbell JH. Mobility analysis of amputees (MAAT 3): Matching individuals based on comorbid health reveals improved function for above-knee prosthesis users with microprocessor knee technology. Assist Technol 2018; 1–7.
- 8. Saglam Y, Gulenc B, Birisik F, et al. The quality of life analysis of knee prosthesis with complete microprocessor control in trans-femoral amputees. Acta Orthop Traumatol Turc 2017; 51: 466e469.
- 9. Chin T, Sawamura S, Shiba R, et al. Energy expenditure during walking in amputees after disarticulation of the hip: a microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee. J Bone Joint Surg Br 2005; 87: 117–119.
- 10. Datta D, Heller B, Howitt J. A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped

knee swing-phase control. Clin Rehabil 2005; 19: 398–403.

- Buckley JG, Spence WD, Solomonidis SE. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Arch Phys Med Rehabil 1997; 78: 330–333.
- 12. Taylor MB, Clark E, Offord EA, et al. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs. Prosthet Orthot Int 1996; 20: 116–121.
- 13. Kirker S, Keymer S, Talbot J, et al. An assessment of the intelligent knee prosthesis. Clin Rehabil 1996; 10: 267–273.
- Chin T, Machida K, Sawamura S, et al. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Prosthet Orthot Int 2006; 30: 73–80.
- Chin T, Sawamura S, Shiba R, et al. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfermoral amputees: comparison of IP users with ablebodied people. Am J Phys Med Rehabil 2003; 82: 447–451.
- Chen C, Hanson M, Chaturvedi R, et al. Economic benefits of microprocessor controlled prosthetic knees: a modeling study. J Neuroengineering Rehabil 2018; 15: 62.